УДК 622.817

Ю.И. Кияшко, А.П. Круковский, В.В. Круковская, Р.А. Дякун (ИГТМ НАН Украины); В. И. Сулаев (НГУ)

К РЕШЕНИЮ НЕЛИНЕЙНОЙ ЗАДАЧИ ДВИЖЕНИЯ МЕТАНО-ВОЗДУШНОЙ СМЕСИ В НЕГЕРМЕТИЧНОМ ТРУБОПРОВОДЕ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Виведені формули для обчислення матриці опору трубопроводу руху метано-повітряної суміші, необхідні при використанні методу кінцевих елементів для розв'язання задачі руху МПС у негерметичному трубопроводі.

TO DECISION OF THE NONLINEAR TASK OF THE METHANE-AIR MIX MOVEMENT IN UNTIGHT PIPELINE BY THE METHOD OF FINITE ELEMENTS

Formulas for calculation of a resistance matrix of the pipeline to movement of the methane-air mix, necessary at using a method of finite elements for the decision of the task of the methane-air mix movement in not untight pipeline.

При разработке угольных пластов происходит увеличение их абсолютной метанообильности в связи с переходом добычных работ на большие глубины (свыше 800 метров от земной поверхности). Это приводит к ухудшению условий работы горняков и к вынужденному уменьшению нагрузок на лавы из-за ограниченных возможностей вентиляции по удалению метана, что, в свою очередь, неприемлемо в современных рыночных условиях, вследствие увеличения себестоимости отгружаемого потребителям угля. Альтернативой сложившемуся положению стало проведение дегазационных мероприятий подземным спо-

собом по разрабатываемым пластам, их спутникам и газонасыщенным песчаникам. Существенное уменьшение себестоимости рядового угля возможно путём использования энергии попутно добываемого газа-метана внутренними энергопотребителями горного предприятия, либо реализацией её на теплоэнергетическом рынке страны. Поэтому актуальным становится внедрение энергетических установок (ЭУ) в горную промышленность. Для внедрения ЭУ следует объединить такие технологические процессы, как добыча угля, дегазация газонасыщенных объектов, доставка метана к ЭУ и его утилизация с получением полезной энергии. Из практики ведения дегазационных работ установлено, что количество добываемого метана соизмеримо с количеством воздуха в метановоздушной смеси (MBC) [1], что указывает на большие потери концентрации MBC при транспортировке газа по дегазационному трубопроводу.

В данной работе рассматривается процесс танспортировки МВС по дегазационному трубопроводу от дегазационных скважин добычного участка до ЭУ.

В связи с выше перечисленными фактами, на современных угольных шахтах для обеспечения основных технологических процессов и создания безопасных условий работы персонала большое значение имеет вопрос повышения эффективности функционирования дегазационных систем. Понятие дегазационная система объединяет комплексы дегазационных скважин, пробуренных в окрестности действующих лав, сам трубопровод, вакуум-насосную станцию (ВНС) и ЭУ (рис. 1).

Рис. 1 – Схема дегазационной системы

Для обеспечения работы ЭУ важно, чтобы в трубопроводе, на выходе из ВНС, МВС имела необходимую концентрацию. Это труднодостижимо по нескольким причинам. Во-первых, из-за подсосов воздуха из горных выработок в связи с не надлежащей герметичностью дегазационного става и дегазационных скважин. Количество воздуха, попадающего в газопровод, зависит от разности давлений, диаметра труб, типа соединений участков трубопровода и т.д. Вовторых, из-за того, что через поврежденные после отхода лавы дегазационные скважины, в дегазационную систему начинает попадать метано-воздушная смесь с низкой концентрацией метана.

Уравнения движения MBC на участке негерметичного трубопровода, учитывающие подсос воздуха через неплотности, равномерно распределенные по длине газопровода и зависящие от атмосферного давления в выработке, были получены Цейтлиным Ю.А. [1]:

$$dp = -\frac{\lambda}{D} \frac{\rho v^2}{2} dl,$$

$$dQ = b(p_0 - p) dl,$$

где dl – длина элементарного участка газопровода, м; dp – изменение давления на этом участке, Па; ρ – плотность MBC, кг/м³; λ – коэффициент Дарси трубопровода; v – средняя скорость потока MBC, м/с; D – внутренний диаметр участка трубопровода, м; dQ – изменение расхода, м³/с p_0 – атмосферное давление в выработке, Па; b – параметр, определяющий степень негерметичности рассматриваемого участка трубопровода.

Скорость движения МВС равна

$$v = -k_{conp} \frac{dp}{dl},$$

где k_{conp} – коэффициент сопротивления, учитывающий шероховатость и наличие воды на этом участке.

Решим задачу, используя численные методы, в частности – метод конечных элементов. Метод конечных элементов сегодня является не только мощным методом расчета, но и средством математического моделирования самых разнообразных физических процессов. По этому методу исследуемая область заменяется дискретной, состоящей из конечных элементов (прямоугольных, треугольных, стержневых и др.), связанных между собой в узлах. Сначала рассматривается каждый элемент по отдельности, и изучаются его свойства независимо от других. Затем элементы объединяются, и удовлетворяются условия непрерывности внутри области и глобальные граничные условия на ее границе. Таким образом, применительно к задачам газодинамики, появляется возможность учитывать сложные граничные условия и разнообразные свойства каждого отдельного участка газопровода, такие как диаметр, длина, коэффициент сопротивления, вызванного шероховатостью труб и наличием в них воды, и сопротивление, обусловленное углом поворота участка трубопровода. Основная концепция метода конечных элементов состоит в аппроксимации искомой непрерывной функции набором простых, кусочно-непрерывных функций, заданными над ограниченными областями – конечными элементами.

Разобьем исследуемую систему (см. рис.1) на N стержневых конечных элементов с узлами x_i, y_i, x_j, y_j , где *i*, *j* изменяются в пределах от 0 до N. Учитывать сопротивление, обусловленное углом поворота участка трубопровода будем через узловые коэффициенты k^{noo}_{i} .

Рассмотрим один из этих конечных элементов в локальной системе координат. Локальная координата l выражается через глобальные координаты x и y следующим образом:

$$l = \sqrt{(x - x_i)^2 + (y - y_i)^2}$$
.

Причем в точке $(x_i, y_i) l_i = 0$, а в точке $(x_j, y_j) l_j = L - длине стержневого элемента.$

Будем считать, что давление *p* метано-воздушной смеси (MBC) в узлах *i*, *j* аппроксимируется линейной функцией:

$$p = a_1 + a_2 l , \qquad (1)$$

или в матричной форме:

$$\{P\} = [A]\{a\},\tag{2}$$

где

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & l_i \\ 1 & l_j \end{bmatrix}.$$

Из выражения (2) следует, что

$$\{a\} = [A]^{-1} \{P\}.$$
(3)

В результате решения системы линейных уравнений (3) получим:

$$a_1 = p_i; \ a_2 = \frac{p_j - p_i}{L}$$

При подстановке значений a_1, a_2 в (1) получим давление MBC в узлах элемента. Чтобы перейти от значений функции P в узлах к ее значению в произвольной точке данного элемента с координатами *x*, *y*, вводятся так называемые функции формы. С их помощью давление *p* выражается следующим образом:

$$p = N_i p_i + N_j p_j, \qquad (4)$$

где N_i, N_j - функции формы (влияния узлов):

$$N_i = \frac{L-l}{L};$$
$$N_j = \frac{l}{L}.$$

Причем $N_i + N_j = 1$ в любой точке элемента, и $N_i = 1$ в *i*-ом узле, $N_i = 0$ в *j* узле, L - длина конечного элемента.

Градиент давления определяется при дифференцировании выражения (4):

$$I_{l} = \frac{\partial p}{\partial l} = \frac{\partial N_{i}}{\partial l} p_{i} + \frac{\partial N_{j}}{\partial l} p_{j} = \frac{1}{L} (-p_{i} + p_{j}).$$

Или в матричной форме:

$$I = \{B\}\{P\},\tag{5}$$

где

$$\{B\} = \left\{ \frac{\partial N_i}{\partial l} \quad \frac{\partial N_j}{\partial l} \right\} = \left\{ -\frac{1}{L} \quad \frac{1}{L} \right\} = \text{const}$$

Скорость фильтрации *v* равна:

$$v = k \ I = k \ \{B\}\{P\} \tag{6}$$

Каждый элемент будет иметь узловые расходы метана в единицу времени Q_i, Q_j . Причем $Q_j = Q_i + Q_{\Pi}$, где Q_{Π} – удельный подсос воздуха на участке, описываемом данным конечным элементом.

Связь между узловыми расходами и узловыми давлениями устанавливается согласно известному принципу возможных вариаций напоров: в замкнутой области установившегося потока при возможном бесконечно малом изменении давлений дополнительная работа потока на замкнутом контуре должна быть равна соответствующей дополнительной работе в пределах области [2, 3].

Этот принцип является одной из возможных физических интерпретаций известного в вариационном исчислении способа решения дифференциальных уравнений с заданными граничными условиями путем минимизации функционала.

Дополнительная работа потока на контуре *A_k* равна сумме произведений узловых расходов и вариаций давлений:

$$A_K = \{Q\}^T \{\partial p\}. \tag{7}$$

Вариация градиента давления равна (из соотношения (5)):

$$\partial I = \{B\}\{\partial p\}.$$
(8)

Дополнительная работа потока в пределах элемента *А*_{вн} равна интегралу по объему элемента от произведения скорости на вариации градиентов давления:

$$A_{BH} = \int_{V} (v\partial I) dv = \frac{\pi D^2}{4} \int_{0}^{L} (v\partial I) dl.$$
(9)

Разбиение интеграла по длине (площади, объему) на сумму интегралов по элементам дает возможность учитывать свойства каждого элемента в отдельности. Это является важной особенностью метода конечных элементов.

Приравнивая выражения (7) и (9), и при подстановке в них выражений (6) и (8) получим:

$$\{Q\} = \frac{\pi D^2 k}{4} \int_0^L \{B\}^T \{B\} \{P\} dl.$$
 (10)

Или

$$\{Q\} = [K]\{P\},\$$

где [K] – матрица сопротивления элемента трубопровода потоку MBC, представляющая собой набор коэффициентов системы линейных уравнений, связывающих n узловых давлений с n узловыми расходами. После преобразований она имеет вид:

$$[K] = \begin{bmatrix} \frac{\pi D^2 k}{4L} & -\frac{\pi D^2 k}{4L} \\ -\frac{\pi D^2 k}{4L} & \frac{\pi D^2 k}{4L} \end{bmatrix}.$$

Затем формируется глобальная матрица сопротивления для всей системы, характеризующая пропускную способность газопровода. Это позволяет, задав граничные условия (давление и концентрацию метана в скважинах, мощность ВНС), получить давление, концентрацию MBC, скорость ее движения и расход в каждом сечении газопровода.

Решив задачу таким образом, можно определить факторы, наиболее влияющие на качество MBC в сети, после чего решать инженерные задачи оптимизации ведения и проектирования дегазационных работ с учетом процесса ведения добычи угля.

Предварительная оценка параметров движения МВС в негерметичном трубопроводе свидетельствует о следующих связях между ними:

концентрация метана в MBC на выходе из трубопровода зависит от его протяженности, что видно из матрицы сопротивления участка газопровода, и диаметра, т.к. количество подсасываемого извне воздуха Q_{Π} есть функция от числа стыков на единицу длины и диаметра участка трубопровода $Q_{\Pi} = f(n_{cmыk}, D)$. Поэтому диаметр можно назвать основным «газовым» показателем, характеризующим уровень удельной негерметичности;

концентрация метана в MBC находится в сложной нелинейной связи с комплексом дифференциальных характеристик газопровода и среды, в которой он расположен. К таким характеристикам относятся следующие: конфигурация и качество трубопровода, его шероховатость, обводненность, количество и углы поворота, типы соединений и другие факторы, учитывающиеся при помощи коэффициентов k в матрице сопротивления трубопровода и узловых коэффициентов k^{nos} . Адекватное решение поставленной задачи может быть получено только путем решения системы дифференциальных уравнений, связывающей воедино законы движения MBC по каждому из участков газопровода со своими характеристиками.

СПИСОК ЛИТЕРАТУРЫ

1. Ю.А. Цейтлин. Анализ течения метано-воздушной смеси по негерметичному газопроводу. - Горная электромеханика и автоматика: Респ. межвед. науч.-техн. сб. – 1977. – Вып. 30.

2. Амусин Б.З., Фадеев А.Б. Метод конечных элементов при решении задач горной геомеханики. – М. Недра, 1975. – 144 с.

3. Фадеев А.Б. Метод конечных элементов в геомеханике. – М: Недра, 1987. – 224 с.